
Stephen Checkoway

Programming Abstractions
Lecture 33: Continuation Passing Style

Continuations

Suppose expression E contains a subexpression S

The continuation of S in E consists of all of the steps needed to complete E

after the completion of S

Example: (- 4 (+ 1 1))

‣ The subexpression S, (+ 1 1), is called the redex ("reducible expression")

‣ The continuation is (- 4 □) where □ takes the place of S

Example: (displayln (foo (bar (* 2 3))))

‣ The continuation of (bar (* 2 3)) is (displayln (foo □))

What is the continuation of (fact (sub1 n)) in the expression 

(* n (fact (sub1 n)))

A. (* n (fact (sub1 n)))

B. (* n (fact (sub1 □)))

C. (* n (fact □))

D. (* n □)

E. □

3

A continuation is really a dynamic construct

A continuation is determined by the expression's evaluation context at run time

(define (fact n)

 (cond [(zero? n) 1]

 [else (* n (fact (sub1 n)))]))

At the point 1 is evaluated in the call (fact 0), the continuation is □

At the point 1 is evaluated in the call (fact 1), the continuation is (* 1 □)

At the point 1 is evaluated in the call (fact 2), the continuation is 

(* 2 (* 1 □))

Key: The continuation is all the rest of computation

Continuations can be quite complicated!

Starting with a positive integer n, construct a sequence where each successive

term is obtained by the current term n

‣ If the current term n is 1, then stop.

‣ If the current term n is even, the next term is n/2

‣ If the current term n is odd, the next term is 3n+1

(The Collatz conjecture says that the sequence produced starting with any

positive integer eventually stops.)

Continuations of the Collatz computation

Continuations of the Collatz computation

(define (collatz n)

 (cond [(= 1 n) '(1)]

 [(even? n) (cons n (collatz (/ n 2)))]

 [else (cons n (collatz (add1 (* 3 n))))]))

Continuations of '(1) in the call (collatz n) for several values of n

Continuations of the Collatz computation

(define (collatz n)

 (cond [(= 1 n) '(1)]

 [(even? n) (cons n (collatz (/ n 2)))]

 [else (cons n (collatz (add1 (* 3 n))))]))

Continuations of '(1) in the call (collatz n) for several values of n

‣ n = 1: □

Continuations of the Collatz computation

(define (collatz n)

 (cond [(= 1 n) '(1)]

 [(even? n) (cons n (collatz (/ n 2)))]

 [else (cons n (collatz (add1 (* 3 n))))]))

Continuations of '(1) in the call (collatz n) for several values of n

‣ n = 1: □

‣ n = 2: (cons 2 □)

Continuations of the Collatz computation

(define (collatz n)

 (cond [(= 1 n) '(1)]

 [(even? n) (cons n (collatz (/ n 2)))]

 [else (cons n (collatz (add1 (* 3 n))))]))

Continuations of '(1) in the call (collatz n) for several values of n

‣ n = 1: □

‣ n = 2: (cons 2 □)

‣ n = 3:  
(cons 3 (cons 10 (cons 5 (cons 16 (cons 8 (cons 4 (cons 2 □)))))))

Continuations of the Collatz computation

(define (collatz n)

 (cond [(= 1 n) '(1)]

 [(even? n) (cons n (collatz (/ n 2)))]

 [else (cons n (collatz (add1 (* 3 n))))]))

Continuations of '(1) in the call (collatz n) for several values of n

‣ n = 1: □

‣ n = 2: (cons 2 □)

‣ n = 3:  
(cons 3 (cons 10 (cons 5 (cons 16 (cons 8 (cons 4 (cons 2 □)))))))

‣ n = 4: (cons 4 (cons 2 □))

Continuations of the Collatz computation

(define (collatz n)

 (cond [(= 1 n) '(1)]

 [(even? n) (cons n (collatz (/ n 2)))]

 [else (cons n (collatz (add1 (* 3 n))))]))

Continuations of '(1) in the call (collatz n) for several values of n

‣ n = 1: □

‣ n = 2: (cons 2 □)

‣ n = 3:  
(cons 3 (cons 10 (cons 5 (cons 16 (cons 8 (cons 4 (cons 2 □)))))))

‣ n = 4: (cons 4 (cons 2 □))

‣ n = 5: (cons 5 (cons 16 (cons 8 (cons 4 (cons 2 □)))))

(define (length lst)

 (cond [(empty? lst) 0]

 [else (add1 (length (rest lst)))]))

What is the continuation at the point 0 is evaluated in the call 

(length '(a b c))

A. 3

B. (length lst)

C. (add1 (length □))

D. (add1 (add1 (add1 0)))

E. (add1 (add1 (add1 □)))

7

Viewing continuations as procedures

We can view a continuation as a procedure of one argument

Example: (- 4 (+ 1 1))

‣ The continuation is (- 4 □) where □ takes the place of S

‣ (λ (x) (- 4 x))

Example: (displayln (foo (bar (* 2 3))))

‣ The continuation of (bar (* 2 3)) is (displayln (foo □))

‣ (λ (x) (displayln (foo x)))

Continuation-passing style

A new way to implement recursive procedures

‣ Each procedure has an extra continuation parameter typically called k

‣ The continuation k says what to do with the result

Continuation-passing style example
Summing numbers in a list

(define (sum-k lst k)

 (cond [(empty? lst) (k 0)]

 [else (sum-k (rest lst)

 (λ (x) (k (+ x (first lst)))))]))

Two things to notice:

‣ In the base case, we call the continuation with our base value (k 0)

‣ In the recursive case, we pass a new continuation procedure that calls k with

the result of adding x to the head of lst

Calling our function

What should we use as the top-level continuation when we call sum-k?

(define (sum-k lst k)

 (cond [(empty? lst) (k 0)]

 [else (sum-k (rest lst)

 (λ (x) (k (+ x (first lst)))))]))

It depends what we want to do with it, typically, we'd want to return the value

‣ We can use (λ (x) x) which Racket predefines as identity

(sum-k '(1 2 3 4) identity) => 10

Compare with accumulator-passing style

(define (sum-k lst k)

 (cond [(empty? lst) (k 0)]

 [else (sum-k (rest lst)

 (λ (x) (k (+ x (first lst)))))]))

(define (sum-a lst acc)

 (cond [(empty? lst) acc]

 [else (sum-a (rest lst) (+ acc (first lst)))]))

In CPS, the extra parameter is a procedure that says what to do with the result

of the computation

In APS, the extra parameter is the intermediate value in the computation

CPS guidelines for recursive procedures

Continuations are procedures with 1 argument

The recursive procedure has a continuation parameter, k

The continuation argument is called once for each branch of computation (think

base case and recursive case)

‣ Not calling the continuation on one of the cases is a common mistake

At the top-level, the continuation is usually identity

Recursive calls must be tail-recursive

Reverse in CPS

(define (reverse-k lst k)

 (cond [(empty? lst) (k empty)]

 [else (reverse-k (rest lst)

 (λ (x) (k (append x (list (first lst))))))]))

Note: this is spectacularly inefficient

‣ (reverse lst) takes time O(n) where n is the length of the list

‣ (reverse-k lst identity) takes time O(n2)

Append in CPS

(define (append-k lst1 lst2 k)

 (cond [(empty? lst1) (k lst2)]

 [else (append-k (rest lst1)

 lst2

 (λ (x) (k (cons (first lst1) x))))]))

What is the run time of append-k?

(define (append-k lst1 lst2 k)

 (cond [(empty? lst1) (k lst2)]

 [else (append-k (rest lst1)

 lst2

 (λ (x) (k (cons (first lst1) x))))]))

Let m be the length of lst1 and n be the length of lst2

A. O(1)

B. O(m)

C. O(n)

D. O(m+n)

E. O(m*n)

16

Comparing append in CPS to normal recursion

(define (append-k lst1 lst2 k)

 (cond [(empty? lst1) (k lst2)]

 [else (append-k (rest lst1)

 lst2

 (λ (x) (k (cons (first lst1) x))))]))

(define (append lst1 lst2)

 (cond [(empty? lst1) lst2]

 [else (cons (first lst1)

 (append (rest lst1) lst2))]))

In append, the continuation of the recursive call is (cons (first lst1) □) plus

all of the other earlier recursive calls (example on next slide)

This is identical to the passed-in continuation in append-k where k is going to

perform the work of the other recursive calls

Continuation example
Appending '(1 2 3) to '(a b c)

Step lst1 append's recursive continuation k argument to append-k's recursive call (expanded)

0 '(1 2 3) (cons 1 □) (λ (x) (k (cons 1 x)))

1 '(2 3) (cons 1 (cons 2 □)) (λ (x) (k (cons 1 (cons 2 x))))

2 '(3) (cons 1 (cons 2 (cons 3 □) (λ (x) (k (cons 1 (cons 2 (cons 3 x)))))

3 '() — —

‣ append's continuations also include the top-level continuation the table omits

‣ k in append-k's recursive calls aren't expanded, they're the closure 

(λ (x) (k (cons (first lst1) x))) with k bound to the previous closure

and lst1 bound to the corresponding lst1 argument in the table

‣ CPS makes the continuations explicit

So what good is this?

Programming with explicit continuations gives you a lot of control

‣ E.g., you can ignore the continuation that is built up and do something else!

Consider our standard sum procedure

(define (sum lst)

 (cond [(empty? lst) 0]

 [else (+ (first lst) (sum (rest lst)))]))

Suppose we want to modify this to return #f if lst contains an element that

isn't a number

What goes wrong with this approach?

(define (sum lst)

 (cond [(empty? lst) 0]

 [(not (number? (first lst))) #f]

 [else (+ (first lst) (sum (rest lst)))]))

A. Nothing. It's perfect

B. (sum '(foo 1 2 3)) will fail

C. (sum '(1 2 foo 3)) will fail

D. B and C

20

A working attempt with CPS

Since CPS uses tail-recursion, we can ignore our built-up continuation k and

just return #f

(define (sum-k lst k)

 (cond [(empty? lst) (k 0)]

 [(not (number? (first lst))) #f]

 [else (sum-k (rest lst)

 (λ (x) (k (+ x (first lst)))))]))

(sum-k '(1 2 3 foo 4) identity) => #f

A better approach

We can use an error continuation

‣ This lets the caller decide what to do with the error

(define (sum-k lst k err)

 (cond [(empty? lst) (k 0)]

 [(not (number? (first lst))) (err (first lst))]

 [else (sum-k (rest lst)

 (λ (x) (k (+ x (first lst))))

 err)]))

> (sum-k '(1 2 3 foo 4)

 identity

 (λ (bad) (printf "Bad element: ~s\n" bad)))

Bad element: foo

Write some CPS

map-k: CPS version of map

collatz-k: CPS version of collatz

fib-k: CPS version of fib

map-k-k: CPS version of map that takes a CPS f

